-
Learning Latent Graph Structures and their Uncertainty, 2024, Manenti, Zambon, Alippi.
@misc{manenti2024learning,
title = {Learning {{Latent Graph Structures}} and Their {{Uncertainty}}},
author = {Manenti, Alessandro and Zambon, Daniele and Alippi, Cesare},
year = {2024},
month = may,
number = {arXiv:2405.19933},
primaryclass = {cs, stat},
publisher = {arXiv},
archiveprefix = {arxiv}
}
-
Graph Deep Learning for Time Series Forecasting, 2023, Cini, Marisca, Zambon, Alippi.
@misc{cini2023graph,
title = {Graph {{Deep Learning}} for {{Time Series Forecasting}}},
author = {Cini, Andrea and Marisca, Ivan and Zambon, Daniele and Alippi, Cesare},
year = {2023},
month = oct,
number = {arXiv:2310.15978},
primaryclass = {cs},
publisher = {arXiv},
doi = {10.48550/arXiv.2310.15978},
archiveprefix = {arxiv}
}
-
Graph Kalman Filters, 2023, Alippi*, Zambon*.
@misc{alippi2023graph,
title = {Graph {{Kalman Filters}}},
author = {Alippi, Cesare and Zambon, Daniele},
year = {2023},
month = mar,
number = {arXiv:2303.12021},
primaryclass = {cs, stat},
publisher = {arXiv},
doi = {10.48550/arXiv.2303.12021},
archiveprefix = {arxiv}
}
-
Where and How to Improve Graph-based Spatio-Temporal Predictors, 2023, Zambon, Alippi.
@misc{zambon2023where,
title = {Where and {{How}} to {{Improve Graph-based Spatio-temporal Predictors}}},
author = {Zambon, Daniele and Alippi, Cesare},
year = {2023},
month = feb,
number = {arXiv:2302.01701},
primaryclass = {cs, stat},
publisher = {arXiv},
doi = {10.48550/arXiv.2302.01701},
archiveprefix = {arxiv}
}
-
Graph state-space models, 2023, Zambon, Cini, Livi, Alippi.
@misc{zambon2023graph,
title = {Graph State-Space Models},
author = {Zambon, Daniele and Cini, Andrea and Livi, Lorenzo and Alippi, Cesare},
year = {2023},
month = jan,
number = {arXiv:2301.01741},
primaryclass = {cs},
publisher = {arXiv},
doi = {10.48550/arXiv.2301.01741},
archiveprefix = {arxiv}
}
-
A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection, IEEE TPAMI, 2024, Jin, Koh, Wen, Zambon, Alippi, Webb, King, Pan.
@article{jin2024survey,
author={Jin, Ming and Koh, Huan Yee and Wen, Qingsong and Zambon, Daniele and Alippi, Cesare and Webb, Geoffrey I. and King, Irwin and Pan, Shirui},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection},
year={2024},
doi={10.1109/TPAMI.2024.3443141}
}
-
Sparse Graph Learning from Spatiotemporal Time Series, JMLR, 2023, Cini, Zambon, Alippi.
@article{cini2023sparse,
title = {Sparse {{Graph Learning}} from {{Spatiotemporal Time Series}}},
author = {Cini, Andrea and Zambon, Daniele and Alippi, Cesare},
year = {2023},
journal = {Journal of Machine Learning Research},
volume = {24},
number = {242},
pages = {1--36},
issn = {1533-7928}
}
-
Understanding Pooling in Graph Neural Networks, IEEE TNNLS, 2024, Grattarola, Zambon, Bianchi, Alippi.
@article{grattarola2024understanding,
title = {Understanding {{Pooling}} in {{Graph Neural Networks}}},
author = {Grattarola, Daniele and Zambon, Daniele and Bianchi, Filippo Maria and Alippi, Cesare},
year = {2024},
month = feb,
journal = {IEEE Transactions on Neural Networks and Learning Systems},
volume = {35},
number = {2},
pages = {2708--2718},
doi = {10.1109/TNNLS.2022.3190922}
}
-
Change-Point Methods on a Sequence of Graphs, IEEE TSP, 2019, Zambon, Alippi, Livi.
@article{zambon2019changepoint,
title = {Change-{{Point Methods}} on a {{Sequence}} of {{Graphs}}},
author = {Zambon, Daniele and Alippi, Cesare and Livi, Lorenzo},
year = {2019},
month = dec,
journal = {IEEE Transactions on Signal Processing},
volume = {67},
number = {24},
pages = {6327--6341},
issn = {1941-0476},
doi = {10.1109/TSP.2019.2953596}
}
-
Change Detection in Graph Streams by Learning Graph Embeddings on Constant-Curvature Manifolds, IEEE TNNLS, 2020, Grattarola, Zambon, Livi, Alippi.
@article{grattarola2020change,
title = {Change {{Detection}} in {{Graph Streams}} by {{Learning Graph Embeddings}} on {{Constant-Curvature Manifolds}}},
author = {Grattarola, Daniele and Zambon, Daniele and Livi, Lorenzo and Alippi, Cesare},
year = {2020},
month = jun,
journal = {IEEE Transactions on Neural Networks and Learning Systems},
volume = {31},
number = {6},
pages = {1856--1869},
issn = {2162-237X, 2162-2388},
doi = {10.1109/TNNLS.2019.2927301},
copyright = {https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html}
}
-
Concept Drift and Anomaly Detection in Graph Streams, IEEE TNNLS, 2018, Zambon, Alippi, Livi.
@article{zambon2018concept,
title = {Concept {{Drift}} and {{Anomaly Detection}} in {{Graph Streams}}},
author = {Zambon, Daniele and Alippi, Cesare and Livi, Lorenzo},
year = {2018},
month = nov,
journal = {IEEE Transactions on Neural Networks and Learning Systems},
volume = {29},
number = {11},
pages = {5592--5605},
issn = {2162-2388},
doi = {10.1109/TNNLS.2018.2804443}
}
-
Learning Latent Graph Structures and their Uncertainty, SPIGM @ ICML, 2024, Manenti, Zambon, Alippi.
@inproceedings{manenti2024spigm,
title = {Learning {{Latent Graph Structures}} and Their {{Uncertainty}}},
author = {Manenti, Alessandro and Zambon, Daniele and Alippi, Cesare},
booktitle={ICML 2024 Workshop on Structured Probabilistic Inference {\&} Generative Modeling},
year = {2024},
url={https://openreview.net/forum?id=GRlNTDymoV}
}
-
Temporal Graph ODEs for Irregularly-Sampled Time Series, IJCAI, 2024, Gravina, Zambon, Bacciu, Alippi.
@inproceedings{gravina2024temporal,
title = {Temporal Graph {{ODEs}} for Irregularly-Sampled Time Series},
booktitle = {Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, {IJCAI-24}},
publisher = {International Joint Conferences on Artificial Intelligence Organization},
author = {Gravina, Alessio and Zambon, Daniele and Bacciu, Davide and Alippi, Cesare},
doi = {10.24963/ijcai.2024/445},
url = {https://doi.org/10.24963/ijcai.2024/445},
}
-
Graph-Based Virtual Sensing from Sparse and Partial Multivariate Observations, ICLR, 2024, De Felice, Cini, Zambon, Gusev, Alippi.
@inproceedings{defelice2024graphbased,
title={Graph-Based {{Virtual Sensing}} from {{Sparse}} and {{Partial Multivariate Observations}}},
booktitle={The {{Twelfth International Conference}} on {{Learning Representations}}},
author={De Felice, Giovanni and Cini, Andrea and Zambon, Daniele and Gusev, Vladimir and Alippi, Cesare},
year={2024},
url={https://openreview.net/forum?id=CAqdG2dy5s}
}
-
Graph Representation Learning, ESANN, 2023, Bacciu, Errica, Micheli, Navarin, Pasa, Podda, Zambon.
@inproceedings{bacciu2023graph,
title = {Graph Representation Learning},
booktitle = {31st {{European Symposium}} on {{Artificial Neural Networks}}, {{Computational Intelligence}} and {{Machine Learning}}, {{ESANN}} 2023},
author = {Bacciu, Davide and Errica, Federico and Micheli, Alessio and Navarin, Nicol{\`o} and Pasa, Luca and Podda, Marco and Zambon, Daniele},
year = {2023},
pages = {1--10},
publisher = {i6doc. com},
doi = {10.14428/esann/2023.ES2023-4},
isbn = {978-2-87587-088-9}
}
-
Graph Kalman Filters, TGL @ NeurIPS, 2023, Zambon*, Alippi*.
@inproceedings{zambon2023tgl,
title = {Graph {{Kalman Filters}}},
booktitle = {Temporal {{Graph Learning Workshop}} @ {{NeurIPS}} 2023},
author = {Zambon, Daniele and Alippi, Cesare},
year = {2023},
month = dec,
url={https://openreview.net/forum?id=KGqtCfYJon}
}
-
Taming Local Effects in Graph-based Spatiotemporal Forecasting, NeurIPS, 2023, Cini*, Marisca*, Zambon, Alippi.
@inproceedings{cini2023taming,
title = {Taming {{Local Effects}} in {{Graph-based Spatiotemporal Forecasting}}},
booktitle = {Advances in {{Neural Information Processing Systems}}},
author = {Cini, Andrea and Marisca, Ivan and Zambon, Daniele and Alippi, Cesare},
year = {2023},
volume = {36},
pages = {55375--55393},
editor = {A. Oh and T. Neumann and A. Globerson and K. Saenko and M. Hardt and S. Levine},
publisher = {Curran Associates, Inc.},
url = {https://proceedings.neurips.cc/paper_files/paper/2023/file/ad58c61c71efd5436134a3ecc87da6ea-Paper-Conference.pdf},
}
-
AZ-whiteness test: a test for signal uncorrelation on spatio-temporal graphs, NeurIPS, 2022, Zambon, Alippi.
@inproceedings{zambon2022azwhiteness,
title = {{{AZ-whiteness}} Test: A Test for Signal Uncorrelation on Spatio-Temporal Graphs},
booktitle = {Advances in Neural Information Processing Systems},
author = {Zambon, Daniele and Alippi, Cesare},
editor = {Koyejo, S. and Mohamed, S. and Agarwal, A. and Belgrave, D. and Cho, K. and Oh, A.},
year = {2022},
volume = {35},
pages = {11975--11986},
publisher = {Curran Associates, Inc.}
}
-
Deep Learning for Graphs, ESANN, 2022, Bacciu, Errica, Navarin, Pasa, Zambon.
@inproceedings{bacciu2022deep,
title = {Deep Learning for Graphs},
booktitle = {30th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, {{ESANN}} 2022},
author = {Bacciu, Davide and Errica, Federico and Navarin, Nicol{\`o} and Pasa, Luca and Zambon, Daniele},
year = {2022},
pages = {481--490},
doi = {10.14428/esann/2022.ES2022-7},
isbn = {978-2-87587-084-1},
organization = {ESANN (i6doc. com)}
}
-
Graph iForest: Isolation of anomalous and outlier graphs, IEEE IJCNN, 2022, Zambon, Livi, Alippi.
@inproceedings{zambon2022graph,
title = {Graph {{iForest}}: {{Isolation}} of Anomalous and Outlier Graphs},
shorttitle = {Graph {{iForest}}},
booktitle = {2022 {{International Joint Conference}} on {{Neural Networks}} ({{IJCNN}})},
author = {Zambon, Daniele and Livi, Lorenzo and Alippi, Cesare},
year = {2022},
month = jul,
pages = {1--8},
issn = {2161-4407},
doi = {10.1109/IJCNN55064.2022.9892295}
}
-
Understanding Catastrophic Forgetting of Gated Linear Networks in Continual Learning, IEEE IJCNN, 2022, Munari, Pasa, Zambon, Alippi, Navarin.
@inproceedings{munari2022understanding,
title = {Understanding {{Catastrophic Forgetting}} of {{Gated Linear Networks}} in {{Continual Learning}}},
booktitle = {2022 {{International Joint Conference}} on {{Neural Networks}} ({{IJCNN}})},
author = {Munari, Matteo and Pasa, Luca and Zambon, Daniele and Alippi, Cesare and Navarin, Nicol{\`o}},
year = {2022},
month = jul,
pages = {1--8},
issn = {2161-4407},
doi = {10.1109/IJCNN55064.2022.9892142}
}
-
Erkennung von Anomalien und Veränderung in Graphsequenzen, D22 Excellent Computer Science Dissertations, 2022, Zambon.
@inproceedings{zambon2022erkennung,
title = {{Erkennung von Anomalien und Ver{\"a}nderung in Graphsequenzen}},
booktitle = {{D22} Ausgezeichnete Informatikdissertationen},
author = {Zambon, Daniele},
year = {2022},
pages = {311--320},
editor={H{\"o}lldobler, Steffen},
publisher = {K{\"o}llen Druck + Verlag GmbH},
isbn = {978-3-88579-980-1}
}
-
Graph Edit Networks, ICLR, 2021, Paassen, Grattarola, Zambon, Alippi, Hammer.
@inproceedings{paassen2021graph,
title = {Graph Edit Networks},
booktitle = {International Conference on Learning Representations ({{ICLR}})},
author = {Paassen, Benjamin and Grattarola, Daniele and Zambon, Daniele and Alippi, Cesare and Hammer, Barbara Eva},
year = {2021}
url={https://openreview.net/forum?id=dlEJsyHGeaL}
}
-
Graph Random Neural Features for Distance-Preserving Graph Representations, ICML, 2020, Zambon, Alippi, Livi.
@inproceedings{zambon2020graph,
title={Graph {{Random Neural Features}} for {{Distance-Preserving Graph Representations}}},
author={Zambon, Daniele and Alippi, Cesare and Livi, Lorenzo},
booktitle={Proceedings of the 37th International Conference on Machine Learning (ICML)},
pages={10968--10977},
editor={Hal Daumé III and Aarti Singh},
volume={119},
series={Proceedings of Machine Learning Research},
year={2020},
month={13--18 Jul},
publisher={PMLR},
issn = {2640-3498}
url={http://proceedings.mlr.press/v119/zambon20a.html},
}
-
Graph Embeddings from Random Neural Features, GRL @ NeurIPS, 2019, Zambon, Alippi, Livi.
@inproceedings{zambon2019graph,
title = {Graph Embeddings from Random Neural Features},
booktitle = {Advances in Neural Information Processing System ({{NeurIPS}}), Graph Representation Learning Workshop},
author = {Zambon, Daniele and Alippi, Cesare and Livi, Lorenzo},
year = {2019}
}
-
Autoregressive Models for Sequences of Graphs, IEEE IJCNN, 2019, Zambon*, Grattarola*, Livi, Alippi.
@inproceedings{zambon2019autoregressive,
title = {Autoregressive {{Models}} for {{Sequences}} of {{Graphs}}},
booktitle = {2019 {{International Joint Conference}} on {{Neural Networks}} ({{IJCNN}})},
author = {Zambon, Daniele and Grattarola, Daniele and Livi, Lorenzo and Alippi, Cesare},
year = {2019},
month = jul,
pages = {1--8},
issn = {2161-4407},
doi = {10.1109/IJCNN.2019.8852131}
}
-
Anomaly and Change Detection in Graph Streams through Constant-Curvature Manifold Embeddings, IEEE IJCNN, 2018, Zambon, Livi, Alippi.
@inproceedings{zambon2018anomaly,
title = {Anomaly and {{Change Detection}} in {{Graph Streams}} through {{Constant-Curvature Manifold Embeddings}}},
booktitle = {2018 {{International Joint Conference}} on {{Neural Networks}} ({{IJCNN}})},
author = {Zambon, Daniele and Livi, Lorenzo and Alippi, Cesare},
year = {2018},
month = jul,
pages = {1--7},
issn = {2161-4407},
doi = {10.1109/IJCNN.2018.8489762}
}
-
Detecting Changes in Sequences of Attributed Graphs, IEEE SSCI, 2017, Zambon, Livi, Alippi.
@inproceedings{zambon2017detecting,
title = {Detecting Changes in Sequences of Attributed Graphs},
booktitle = {2017 {{IEEE Symposium Series}} on {{Computational Intelligence}} ({{SSCI}})},
author = {Zambon, Daniele and Livi, Lorenzo and Alippi, Cesare},
year = {2017},
month = nov,
pages = {1--7},
doi = {10.1109/SSCI.2017.8285273}
}
-
Ecg monitoring in wearable devices by sparse models, ECML PKDD, 2016, Carrera, Rossi, Zambon, Fragneto, Boracchi.
@inproceedings{carrera2016ecg,
title = {{{ECG Monitoring}} in {{Wearable Devices}} by {{Sparse Models}}},
booktitle = {Machine {{Learning}} and {{Knowledge Discovery}} in {{Databases}}},
author = {Carrera, Diego and Rossi, Beatrice and Zambon, Daniele and Fragneto, Pasqualina and Boracchi, Giacomo},
editor = {Berendt, Bettina and Bringmann, Bj{\"o}rn and Fromont, {\'E}lisa and Garriga, Gemma and Miettinen, Pauli and Tatti, Nikolaj and Tresp, Volker},
year = {2016},
pages = {145--160},
publisher = {Springer International Publishing},
address = {Cham},
doi = {10.1007/978-3-319-46131-1_21},
isbn = {978-3-319-46131-1}
}